Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding
نویسندگان
چکیده
Given the nonlinear manifold structure of facial images, a new kernel-based supervised manifold learning algorithm based on locally linear embedding (LLE), called discriminant kernel locally linear embedding (DKLLE), is proposed for facial expression recognition. The proposed DKLLE aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. DKLLE is compared with LLE, supervised locally linear embedding (SLLE), principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), and kernel linear discriminant analysis (KLDA). Experimental results on two benchmarking facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database, demonstrate the effectiveness and promising performance of DKLLE.
منابع مشابه
Facial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFacial Expression Recognition Based on Local Binary Patterns and Local Fisher Discriminant Analysis
Automatic facial expression recognition is an interesting and challenging subject in signal processing, pattern recognition, artificial intelligence, etc. In this paper, a new method of facial expression recognition based on local binary patterns (LBP) and local Fisher discriminant analysis (LFDA) is presented. The LBP features are firstly extracted from the original facial expression images. T...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملA Fusion-based Gender Recognition Method Using Facial Images
This paper proposes a fusion-based gender recognition method which uses facial images as input. Firstly, this paper utilizes pre-processing and a landmark detection method in order to find the important landmarks of faces. Thereafter, four different frameworks are proposed which are inspired by state-of-the-art gender recognition systems. The first framework extracts features using Local Binary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012